Week 5: Midterm Review!

MATH 4A
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X
Math Lab hours: Monday 3-5PM, South Hall 1607
Disclaimer: Since I am not the one writing the exam, I cannot guarantee this practice "exam" will look anything like the midterm. However, I reckon if you can do these without trouble, you're probably quite fine for the midterm.

Definitions: Here's a list of definitions that you should definitely know. Note that this list may not be comprehensive!

- A systems of equations is consistent when...?
- A matrix is in RREF when...
- A matrix is invertible when...
- Consider the set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m}. Define the span of these vectors.
- Consider the set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m}. We say $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is linearly independent when...
- What does it mean for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be a linear transformation?
- Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We say T is one-to-one when... Additionally, if T is one-to-one, what can we say about m in relation to n ?
- Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We say T is onto when... Additionally, if T is onto, what can we say about m in relation to n ?
- What is a basis of a vectors space?
- What is the dimension of a vector space?
- What is the nullity of a matrix? What is the null space (kernel)?
- What is the rank of a matrix? What is the column space (image)?

3-2.3 Find a set of vectors $\{u, v\}$ in \mathbb{R}^{4} that spans the solution set of

$$
\left\{\begin{array}{r}
w-x+y-2 z=0 \\
3 w+2 x-y+z=0
\end{array}\right.
$$

3-2.9 $\mathrm{A}=\left[\begin{array}{ccc}-3 & 9 & -9 \\ -4 & 14 & -14 \\ 1 & -1 & 1\end{array}\right]$. Is it true that $A x=b$ has a solution for every b ?

4-1.5 Let $v=\left[\begin{array}{l}-4 \\ -6 \\ -8\end{array}\right], u=\left[\begin{array}{c}-3 \\ -3 \\ 8+k\end{array}\right]$, and $w=\left[\begin{array}{c}-4 \\ -1 \\ 2\end{array}\right]$. The set $\{v, u, w\}$ is linearly independent
unless $k=$?

4-2.5 Let $v_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-12 \\ 8\end{array}\right]$ and $T\left(v_{2}\right)=\left[\begin{array}{c}19 \\ -9\end{array}\right]$. For an arbitrary vector $v=\left[\begin{array}{l}x \\ y\end{array}\right]$, find $T(v)$.

5-2.12 Let $A=\left[\begin{array}{ccc}-1 & -3 & -2 \\ 1 & 3 & 2 \\ -2 & -6 & -4\end{array}\right]$. Find a basis for the null space (kernel) of A.

